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The lattice thermal conductivity of germanium has been analyzed on the basis of the Callaway
model in the temperature range 2-1100 °K. At high temperatures four-phonon processes are
seen to play an important role in the determination of the thermal resistivity of germanium. In
order to take account of the nonlinear behavior of the dispersion relations of the crystal lattice,
the phonon wave vector is assumed to be certain simple but different functions of the phonon
frequency for longitudinal and transverse branches. Three-phonon processes having different
temperature dependences in the various temperature ranges have been used in the calculations.
Very good agreement with the experimental results has been obtained.

I. INTRODUCTION

The need to include four-phonon processes in
explaining the lattice thermal conductivity of solids
at high temperatures has already been recognized. !~¢
The thermal resistivity of a solid due to four-phonon
processes for longitudinal phonons was calculated
by Pomeranchuk, 2

As an exact treatment of the lattice thermal con-
ductivity of solids is hampered by the lack of knowl-~
edge of the crystal vibration spectra and the an-
harmonic forces, and by the difficulty of obtaining
the exact solution of the Boltzmann equation, a
simplified phenomenological model due to Callaway”’
has been widely used®~'? at low temperatures, to
explain the thermal conductivity of a number of
solids. In the Callaway model we use the Debye
approximation, i.e., a linear relation between
phonon frequency w and phonon wave vector 4, which
is satisfactory only for very long-wavelength pho-
nons, which are the main carriers of heat at very
low temperatures. At high temperatures the de-
parture of the dispersion relation from linearity
should be taken into account. Further, the different
behavior of longitudinal and transverse phonons
should also be allowed for. Some of these points
have been considered by several workers®:13-15 o
explain successfully the thermal conductivity of a
number of solids.

In earlier studies no proper distinction was made
between the phonon group and phonon phase veloc-
ities, which is very important especially for the
case of high-frequency phonons. In order to ac-
count for the departure of the dispersion relation
of phonons from a linear one, a simple function of
frequency, e.g., a quadratic function for the phonon
wave vector, has been used in earlier analyses, 16:17

In the case of germanium the dispersive nature of
the longitudinal anhd the transverse phonons is
nearly accounted for if one takes quadratic and
cubic forms of the frequency dependence of the
wave vectors. Similar functions have been used
in the case of GaAs '® to explain the experimental
lattice thermal conductivity. We may, thus, ex-
press the phonon group and phase velocities as the
functions of the phonon frequency. The first Bril-
louin zone is taken to be spherically symmetric
and the two transverse branches to be degenerate.
To account for the resistance incurred by the three-
phonon processes, Guthrie!® has suggested that
three-phonon relaxation times can be expressed by
T-™, where m is an exponent which is a function

of the temperature 7. The different values of the
exponent m are chosen to determine the relaxation
rates in the different temperature ranges.

II. THEORY

Callaway’s” model for the lattice thermal con-
ductivity can be expressed as a sum of two integral
terms. The relative magnitudes of these two terms
vary from substance to substance. The contribu-
tion of the second term, which is usually called the
correction term, is seen to be negligible in com-
parison to the first one in a majority of cases. & 1415
But in some cases, like helium,® where the normal
processes are dominant, it imparts a major con-
tribution., In germanium the normal processes are
not very important, and we therefore ignore the
contribution of the second term. Further, we do
not consider the contribution of optical phonons,
which is likely to be negligible in the case of ger-
manium. The Brillouin zone of Ge, which has a
diamond-type structure, is assumed to be spher-
ically symmetric. The contributions of the three
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polarization branches, one longitudinal and two
transverse, are calculated separately to obtain the
thermal conductivity.
The contribution of each branch is given by an
expression of the form
2,2 hw/kT
K;= glngvﬁﬂcz%c% ‘(én'i‘fﬁ_—l)z ¢ dg, ()

where i denotes the transverse or longitudinal
branch and the integration is to be performed over
the first Brillouin zone assumed to be spherical.
v,; denotes the group velocity of a phonon of the

ith branch, and 7; is the total relaxation time, to
be discussed later. The phonon frequencies of the
two transverse branches are very nearly equal and
are very different from the corresponding frequen-
cies of the longitudinal ones for most of the direc-
tions of the wave vectors in the reciprocal lattice
space. We therefore assume the contributions of
the two transverse branches to be equal and denote
them by the same expression.

To evaluate the integral of Eq. (1) one should
know the appropriate dispersion relations. In a
real solid w is a function of the magnitude as well
as the direction of the wave vector §. For a
spherical Brillouion zone w is a function of |§].

In the earlier analyses, an acoustic approximation,
i.e., a linear relation between w and §, has always
been assumed but this is not a good approximation,
particularly at high frequencies. Experimental
study of the dispersion curves of Ge shows that at
small wavelengths the w-g curve bends gradually
towards the ¢ axis and this bending is different for
the longitudinal and transverse branches. One may
therefore express ¢ as a polynomial of w, In order
to avoid the involvement of a large number of un-
known parameters in the expansion, we restrict
ourselves to the consideration of a few of its terms.

In the case of germanium, the following frequen-
cy-dependent functions for the wave vector have
been seen to be appropriate: For longitudinal pho-
nons

qr=wy vi' (1+ aw;) | (2a)
and for transverse phonons
qr=wrvy (1+pw}). (2b)

In these equations v; and vy are the low-frequen-
cy phonon velocities. The constants @ and B are
evaluated by using the fact that the total number
of phonon states per polarization branch in a given
crystal is equal to the number of lattice points
available. If n is the number of lattice points per
unit volume of the solid, it may be easily shown
that

a=(1/w,;) [6rn?)'/3 VL /Wy — 1] (3a)

and
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FIG. 1. Dispersion relations in Ge in the [111] direc-
tion. Squares and circles indicate the experimental re-
sults for transverse and longitudinal branches, respec-
tively. The full curve denotes the theoretical fit by
Brockhouse and Iyengar. The dashed curve shows a
quadratic frequency dependence of the wave vector; the
dot~dash curve, a cubic dependence.

B=(1/WBp) [6n12) 2 vy /0, = 1], (3b)

where the subscript » denotes the maximum value
of the frequency of the branch concerned.

We have compared the dispersion relations cal-
culated by using Egs. (2a) and (2b) with the avail-
able experimental measurements from Brockhouse
and Iyengar?® along two symmetry directions, [111]
and [100], in Figs. 1 and 2, respectively. The
results, after using the cubic frequency dependence
for the longitudinal branch and the quadratic de-
pendence for the transverse ones, have also been
shown. It is obvious that a quadratic dependence
for longitudinal phonons and a cubic frequency de-
pendence for the case of transverse ones are more
near to the experimental results. Further, in
view of the fact that these dependences involving
the same values of the parameters « and g give
good results in two entirely different symmetry
directions, except in the case of [100] direction
for transverse branch, it may also be true along
other directions.

Using Eqs. (2), we may determine the phonon
phase velocity V, and phonon group velocity V, and
rewrite Eq. (1) as
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6n<n® J, Vs
where x=7w/kT and ® ; = 7w, /k.
This equation is different from that of Holland
in that here we have used v,/¢2 in place of 1/v taken
by Holland. Although the dimensions of the ex-
pression vﬁ/vg are those of velocity and are constant
for a given phonon, it is not in fact the phonon ve-
locity. According to Holland the phonon velocity
v, used by him in place of v%/v,, is a sufficiently
decreasing function of w and is such that its aver-
aged value for low-frequency phonons is more than
twice the velocity of high-frequency phonons. Since
v, decreases more rapidly than v, as w increases,
one cannot expect the value of vf,/v,Z for high-fre-
quency phonons to be much less than that of the
low-frequency phonons. This expectation is sup-
ported by the form of expression for »2/v, obtained
after using the simplified expressions of |§| given
by Egs. (2). It is seen that for germanium vﬁ/vg
is approximately constant for longitudinal phonons
and for transverse phonons its value at w=w,, is
about 1. 5 times the value at low frequencies.
The contributions to the lattice thermal conduc-

ANALYSIS OF THE LATTICE THERMAL CONDUCTIVITY

3529

tivity from the longitudinal and transverse phonons
may thus be written as
kT

672073
6nv i J,

®p/T Ke*

(1+ o' Tx)?

1+2a'Tx dx, (52)

Ke*

f@)T/T

(s BT (ob)

1+38'T%x2

BT

Kr= 6nlvph°

where a’'= ak/# and p'= BR?/nK2.

III. PHONON-SCATTERING PROCESSES

A. Boundary Scattering

There are several phonon-scattering processes
that lead to thermal resistivity in semiconductors.
At very low temperatures the thermal conductivity
can be very well explained on the basis of boundary
scattering. 2!-2® Casimir?® has shown that the bound-
ary-scattering relaxation time 7, is given by L/v,
where L is characteristic length associated with
the specimen under study and v is the phonon veloc-
ity. The boundary scattering is important for low-
frequency phonons and it is unimportant whether
we use group velocity or phase velocity. It is
sufficient to use a low-frequency value for v.
land has used one weighted average value of v
for all the polarization branches. We believe that
it should be a better approximation if one uses the
different low-frequency phonon velocities for dif-
ferent polarization branches. The characteristic
length L is determined by the crystal dimensions
and is assumed to be the same for all phonons.

The value of L given by theory does not give good
agreement with the experiment and therefore we
treat L as an unknown parameter to which we assign
a value that gives the best fit to the experimental
results,

Hol-

B. Scattering Due to Isotopes, Point Defects, etc.

At temperatures near the conductivity maximum,
the scattering due to isotopes, point defects, etc.,
are the dominant relaxation processes. At such
temperatures the high-frequency phonons are not
excited to a large extent and it is reasonable to use
Aw! for the inverse relaxation time 7;}. This ex-
pression was initially obtained by Klemens?* and is
particularly valid for low-frequency phonons, 2326

C. Three-Phonon and Four-Phonon Processes

At high temperatures the three-phonon processes
are the dominant relaxation processes. They can
also be important at low temperatures and they
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give quite a substantial contribution to the thermal
resistivity at the conductivity maximum. It is dif-
ficult to assign a simple and exact form for the
three-phonon relaxation time 75,,. However, it is
evident that 73, has different values for transverse
and longitudinal branches. Many authors!3:27:28
have calculated approximate expressions for 7, .
These results suggest that it is a good approxima-
tion to assume the frequency dependence of 7;l, as
w and «? for transverse and longitudinal phonons,
respectively. We ignore the exponential factor
which appears in the expression of the relaxation
rate of the umklapp processes and assume that the
normal and umklapp processes have the same fre-
quency dependence.

As a matter of fact, the thermal conductivity is
not very sensitive to the frequency dependence of
T;},h at high temperatures. However, it is extremely
sensitive to the temperature dependence of Tixlm'
Guthrie'® has shown that a fixed temperature de-
pendence of the type 7° or T* is valid at low tem-
peratures. He has suggested that 7‘5x1m may be ef-
fectively taken to be proportional to 7™, where m
is an exponent which has different values in differ-
ent temperature ranges, At low temperatures the
values of m for longitudinal and transverse phonons
are 3 and 4, respectively, and tend to unity at high
temperatures irrespective of the branch and the
type of the processes (normal or umklapp). It is
not possible to determine an exact variation of m
with temperature. A possible approximation is to
define a temperature range for which the values
of m may be taken to be constant. This leads to
a large number of parameters. These parameters
are not arbitrary, because the relaxation-time ex-
pressions should be smoothly joined at temperatures
which are common to the two adjacent ranges.
Thus a single parameter can be associated with
T3n iN One temperature range.

It is observed that at temperatures above 350 °K
the calculated thermal conductivity, considering
only three-phonon processes, does not decrease
with the increase of temperature as rapidly as the
experimental data. This suggests the occurrence
of some extra phonon scattering processes whose
effect increases more rapidly with temperature.
Pomeranchuk? obtained in the first approximation
a relaxation rate for longitudinal phonons which is
quadratic in the phonon frequency and temperature,
after considering the quartic term in the atomic
displacements appearing in Taylor’s expansion of
the potential energy of a solid. Later Pomeranchuk?®
also showed that four-phonon processes may also
occur due to the cubic term, not in the first order
but in the second-order approximation of the per-
turbation theory. The relaxation time seen in the
later case is frequency independent and smaller
by a factor of (%w/@®)? than the former. At high
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temperatures one may expect that the former mech-
anism is more operative than the later one. It

has been seen that at high temperatures the major
contribution to thermal conductivity is due to trans-
verse phonons. ®'1%:?* Pomeranchuk has made his
calculations only for longitudinal phonons. As no
calculation is available for the case of transverse
phonons, we have used a relaxation rate for four-
phonon processes similar to a longitudinal one.
However, for the case of three-phonon processes
Guthrie'® has shown that for high-temperature pho-
nons the forms of the relaxation times for longitu-
dinal and transverse phonons are practically the
same., Even for low-frequency phonons, not much
difference in this dependence is observed. We
presume that the same is true for the case of four-
phonon processes. The relaxation time 7,,, for
four-phonon processes derived by Pomeranchuk?

is given by

Tion= By *T% ®)

where By is a parameter,
The total relaxation time 7, is thus given by

-1l __ =l -1 -1 -1
Td=Tg + T+ T3+ Tiks - )

In order to specify the polarization branches one
has to apply suffix L or T to the various terms of
Eq. (7).

The total lattice thermal conductivity K, after
taking into account the degeneracy of the transverse
branch, may be expressed as

K=K;+2K; . (8)

This expression differs from that of Holland® in
the sense that only two terms are considered here
against the three terms used by him.

IV. CALCULATIONS

The lattice thermal conductivity of germanium
has been analyzed by numerically integrating Eqs.
(5) after using the relaxation rate parameters listed
in Table I. An exact estimation of the magnitude
of the parameters requires simultaneous consider-
ation of all the relaxation times and one has to
perform complicated numerical integrations. We
have tried to obtain the final set of parameters
that lead to the best fit to the experimental re-
sults, #3031 In Table II, we list all the parameters
for the case of solid germanium. The values of
®; and @, are similar to those of Holland.!®* v,
and V, are obtained from the dispersion curves
(Fig. 1) by drawing tangents at low frequencies.
The number of lattice points per unit volume of
germanium crystal has been calculated after taking
into consideration that there are two atoms per
lattice point. The values of @ and B8 are obtained
with the help of Eqs. (3a) and (3b).

The parameter A is usually evaluated by binomi-
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ally expanding the expression for 7, at low temper-
atures, treating 7;} as a small quantity compared
to T;!. Such an expansion is not valid here due to
the following considerations. First, the inequality
1';{ <7;! does not hold for all values of x lying with-
in the integration limits. Second, a binomial ex-
pansion is not valid particularly when the upper
limit of integration is replaced by infinity., What
one should do is to evaluate the integrals numerical-
ly without taking any approximation of this type.
However, binomial expansion of 7, is valid at high

TABLE I. Inverse relaxation times used in analyzing
the lattice thermal conductivity of germanium. By,
= ZOBL; BL 2= 115BL1; BL3= 17OBL2', and BT; BT]’ BTZ N and

Br, are similarly related.
Type of Longi~ Trans- Temperature
scattering  Symbol tudinal verse range (°K)
Boundary?* 3! vy/L  wvp/L All
temperatures
Isotope, etc.® 75} Awt Aw! All
temperatures
Three-phonon® 73, Brw?T* BrwT T <20
Brw'T* BrwT® 20<T<115
BrwT* Bp,wT® 115<T<170
BLSsz BrwT T>=170
High
Four-phonon® 'r;’ph - B Hw2T2 temperatures

3Reference 22.

PReference 24.

“References 26, 13, and 28; the temperature dependence
of the three-phonon relaxation is based on the results of
Ref. 19.

dReference 2.

]
1 2 5 107 20 50 102 200

500 103

temperatures where T;1<7;.,, and this inequality
is satisfied for all values of x within the integration
limits. The obtained value of A given in Table II
leads to a good agreement with the experimental
results, #:30:3

It is observed that up to 300 °K there is good
agreement of the theory with the experimental re-
sults, but above this temperature agreement is
only obtained if one includes four-phonon processes.
The dotted curve in Fig. 3 shows the behavior of
the thermal conductivity if four-phonon processes
are ignored.

We have found that the contribution of the longitu-
dinal phonons is small. At low temperatures K,
the contribution due to longitudinal phonons is about
one-fourth of the total contributions of the phonons
of the two transverse branches. This result is not

TABLE II. Paramaters used in the analysis.
a (atomic weight) 72.6
p (density) 5.46 gmem™ 2
Or 118 °K?
Or 333 °KP
vp 3.11x10° cm sec™
v, 6.24x10° cm sec™!
a 5.62x 10" sec

6.43x10"%" deg sec?

LP 0.32 (0.24) cm®
A 5.0% 1074 sec?
Bp 1.73% 10712 geg™
By 3.50x 10" sec deg™
By 2.91x 10" gec deg™

2Reference 29.

PReference 13.

°The bracketed value is used by Holland, the other by
us.
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unexpected, because there are two transverse
branches, and the value of the phonon velocity vg
is smaller than that of v;. This means that the
transverse phonon states are more densely packed
in the energy space compared to the longitudinal
phonon states. At high temperatures the magnitude
of K; is lower than the corresponding transverse
contribution by 10%. These results are in agree-
ment with the recent results of Hamilton and Par-
rott.?® It should be noticed that in Holland’ s anal-
ysis the longitudinal contribution is small compared
to the transverse one at both low and high temper-
atures. At about 90 °K the two are comparable.

In Fig. 3 we have plotted K; and 2K, separately

to show their relative magnitudes.

Another point which is worth considering is that
it is difficult to simplify the integrals in Eqgs. (5a)
and (5b) so that K may be expressed as a simple
function of temperature. This is due to the fact
that each of the relaxation times is dominant over
all others at one temperature or another. The
high temperature forms of K; and K, can be sim-
plified to some extent if one approximates xZ2e*/
(e* = 1)? by unity for x<1 and if the boundary scat-
tering is neglected. The integrals so obtained can
easily be evaluated analytically.
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V. CONCLUSIONS

The thermal conductivity of solid germanium
has been very successfully explained in the tem-
perature range 2-1100 °K. The importance of the
four-phonon processes has been exhibited at high
temperatures since, if these are ignored, the ther-
mal resistivities of solid germanium cannot be
understood. By taking into account the nonlinear
character of the dispersion relations at high fre-
quencies, simple but different expressions for the
wave vectors have been assumed for the different
types of the phonons (longitudinal and transverse).
Different temperature dependences in the different
temperature ranges were used to yield a better
approximation for the three-phonon relaxation
rates. Finally, it is observed that the transverse
phonons make a significant contribution to the ther-
mal conductivity of germanium at all temperatures.
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